Preliminary communication

 $Me_3 SnCl/solvent$ interaction studied through heteronuclear double magnetic ${}^{1}H - {}^{119}Sn$ resonance

V.N. TOROCHESHNIKOV, A.P. TUPČIAUSKAS, N.M. SERGEYEV and Yu.A. USTYNYUK NMR Laboratory, Chemistry Department, M.V. Lomonosov State University, Moscow (USSR) (Received December 9th, 1971)

The first paper¹ on the ¹¹⁹Sn chemical shifts in organotin compounds mentioned that the shifts were strongly dependent on the solvent used. Later, a dependence of the shifts on concentration was found² for compounds of the type Alk₃SnX. However, direct recording of the ¹¹⁹Sn NMR spectra as used in both the papers cited above did not permit the ¹¹⁹Sn chemical shifts to be studied at low concentrations.

The ¹H–{¹¹⁹Sn} heteronuclear double magnetic resonance (HDMR) technique enabled us to find the ¹¹⁹Sn chemical shifts for Me₃SnCl at low concentrations³. The solvent effect was determined for 5% M concentrations of organotin compounds. The shifts varied from -179.3 (in Me₂CO) to -44.5 ppm (in MeOH). This may be explained by assuming that the organotin compounds can form complexes with donor solvents.

The present paper deals with a study of the ¹¹⁹Sn shifts as a function of concentration and temperature in various solvents. Me₃SnCl was chosen as the object of the study.

The ¹¹⁹Sn chemical shift observed, $\delta_{obs.}$, is an averaged quantity:

$$\delta_{\rm obs} = (1 - \alpha) \,\delta_{\rm o} + \alpha \delta_{\rm c} \tag{1}$$

where δ_0 is the ¹¹⁹Sn chemical shift for the uncomplexed Alk₃SnX, δ_c is the same for the complexed Alk₃SnX, and α is the extent of complex formation.

Formation of an equimolar complex may be written as follows:

$$Alk_3 SnX + D + \frac{k_1}{k_2} Alk_3 SnX : D$$
(2)

where D is a donor solvent.

In this case, the equilibrium constant, K, may be calculated² from the concentration dependences found for the chemical shifts,

$$K = \frac{k_1}{k_2} = \frac{\delta_0(\delta_c - C\delta_0)}{\delta_0^2(1 - C) + C\delta_0^2 - \delta_0\delta_c}$$
(3)

where C is the initial molar fraction of Alk₃SnX.

The ¹¹⁹Sn chemical shifts were measured with the aid of the ¹H- {¹¹⁹Sn} HDMR technique on a JEOL C-60HL instrument which recorded the proton spectra. Frequency sweep and internal lock were used throughout. The ¹¹⁹Sn spectrum was irradiated at 22.37 MHz with a Ch1-9 synthesizer. The frequency was set accurately to within ±1 Hz. Other details of the experiment may be found elsewhere³.

We have studied solutions of Me₃SnCl in acetone, dioxane, methanol, ethanol, carbon tetrachloride and methylene chloride, as well as solutions of Et₃SnCl in acetone or acetonitrile. Tables 1-7 summarise the ¹¹⁹Sn chemical shifts obtained at various

TABLE 1

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Me₃SnCl DISSOLVED IN ACETONE ^{*a*}

Concentration	Temperature (°C)							
(molar percent)	-55	-34	-2	+20	+37	+50		
20	-84.8	-92.7	-104.3	-113.2	-121.3	-125.5		
15	-82.5	-91.3	-102.7	-111.8	-119.8	-124.1		
10	-80.8	-90.4	-101.5	-110.3	-118.5	-122.9		
5	-79.0		-100.4	-109.3	-117.4	-121.7		
2	-77.8	-87.5	- 98.4	-108.5	-116.4	-121.0		
δ ^b κ	-74±6	-77±5	-76±4	78±4	-79±3	-78±3		
<u>к</u> .	12.6±3	7.1±2	2.5±0.6	1.7±0.4	1.1±0.2	0.9±0.15		

^a ¹¹⁹Sn chemical shifts are given in ppm relative to tetramethyltin, ${}^{b}\delta_{c}$ is the ¹¹⁹Sn chemical shift for the complexed Alk₃SnX, ${}^{c}K$ is the calculated value of the equilibrium constant.

TABLE 2

Concentration (molar percent)	Tempera	ture (°C)				
	20	-5	+20	+40	+60	+70
40	-107.3	-114.7	-118.9	-129.3	-135.6	-137.5
20	-101.7	-108.7	-116.2	-126.1	-130.9	-133.5
10	- 98.2	-105.0	-113.2	-123.6	-128.7	-131.1
5	- 95.2	-103.4	-111.5	-120.4	-127.1	-129.6
3	- 92.7	-101.6	-110.8	-119.5	-126.4	-129.0
δ _c	-84±6	-86±5	87±5	87±5	-88±4	-85±5
ĸ	6.2±2	3.5±0.8	2.1±0.5	1.2±0.2	0.8±0.1	0.7±0.1

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Me₃SnCl DISSOLVED IN ACETONITRILE ^{*a*}

^a See remarks to Table 1.

TABLE 3

Concentration (molar percent)	Temperature (°C)						
	+20	+37	+50	+68	+82		
20	-125.3	129.1	-135.2	-139.6	_		
15	-124.3	-128.0	-134.1	-138.3	141.9		
10	-123.8	-127.6	-133.7	-137.9	-141.4		
5	-121.5	-126.3	-132.5	-136.9	-140.7		
2	-120.4	-125.5	-131.6	-136.4	-140.1		
δα	-104±4	-103±4	-105±4	-104±3	-106±4		
K	2.1±0.4	1.5±0.3	1.0±0.2	0.7±0.1	0.5±0.1		

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Me₃SnCI DISSOLVED IN DIOXANE^{*a*}

^a See remarks to Table 1.

TABLE 4

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Et₃SnCl DISSOLVED IN ACETONITRILE ^{*a*}

Concentration	Temperature (°C)						
(molar percent)	-9	+20	+35	+48	+63		_
90	-146.8	-148.6	-151.8	-153.1	-154.7		_
75	-139.7	-141.8	-145.4	-147.9	-149.0		
50	-127.2	-134.8	-137.2	-139 . 7	-141 .9		
25	-115.5	-124.0	-127 . 6	-130.7	-133.2		
10	-111.6	-120.2	-124.8	-127.4	-130.1		
δ _c	-84±5	86±4	-87±4	-86±5	-88±6		
K	1.9±0.4	1.2±03	0.9±0.2	0.8±0.1	0.6±0.1		

^a See remarks to Table 1.

TABLE 5

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Et₃SnCl DISSOLVED IN ACETONE ^{*a*}

Concentration (molar percent)	Tempera	ture (°C)				
	-20	-10	+20	+35	+48	
90	-146.2	-147.5	-149.0	-150.9	-1.52.7	
75	-136.8	-139.7	-147.5	-147.8	-149.4	
50	-125.0	-128.3	-134.8	-140.0	-142.3	
25	-112.2	-115.9	-125.5	-131.6	-133.7	
10	-108.0	-111.7	-121.3	-127.7	-129.2	
δ _c	83±5	-81±6	-84±4	-82±5	-85±4	
ĸ	2.1±0.4	1.6±0.3	1.0±0.3	0.7±0.1	0.5±0.1	

^a See remarks to Table 1.

TABLE 6

Concentration (molar percent)	Temper	ature (°C)				
	-13	+1	+20	+33	+56	
20	-36.6	-42.3	-51.1	-54.4	-64.4	
12	-34.1	-39.9	-48.2	-52.1	-61.2	
7	-30.3	-35.9	-43.0	-45.5	-54.1	
4	-29.3	-34.6	-41.7	-44.4	-52.8	
2	-28.6	-34.0	-40.9	-43.9	-51.9	

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), FOR Me₃SnCl DISSOLVED IN METHANOL^{*a*}

^a See remarks to Table 1

TABLE 7

¹¹⁹Sn CHEMICAL SHIFTS, δ (PPM), Me₃SnCl DISSOLVED IN ETHANOL^{*a*}

Concentration	Temperature (°C)						
(molar percent)	-35	0	+20	+30	+50		
20	-27.7	-42.2	-51.8	-60.2	-69.4		
15	-26.7	-40.1	-50.7	-57.5	-68.5		
10	-24.9	-37.1	-47.9	-54.0	-65.2		
5	-22.7	-35.8	-44.6	-52.6	-63.5		
2	-21.4	-35.7	-43.7	-51.7	-62.3		

^a See remarks to Table 1.

concentrations and temperatures. Values of δ_c and K are also shown. These are calculated using eqn. (3).

The K vs. temperature plot helps to estimate the molar enthalpy of complex formation using eqn. (4):

d (lnK)	ΔH	
d <i>T</i>	$=\overline{RT^2}$	(4)

TABLE 8

ΔH values for complexes of trimethyl- or triethylstannyl chlorides with acetone, acetonitrile and dioxane

Complex	ΔH (kcal/mole)
Me_3SnCl with acetone Me_3SnCl with acetonitrile Me_3SnCl with dioxane Et_3SnCl with acetone Et_3SnCl with acetonitrile	$\begin{array}{c} 4.2 \pm 1.3 \\ 4.1 \pm 1.15 \\ 5.1 \pm 1.5 \\ 3.3 \pm 1.4 \\ 2.8 \pm 1.25 \end{array}$
J. Organometal. Chem., 35 (1972)	

The results, which are listed in Table 8 are close to those calculated by thermochemical methods⁴.

The solvents studied may be subdivided into three groups:

(i) carbon tetrachloride and methylene chloride, which do not significantly affect the 119 Sn chemical shifts associated with Me₃SnCl; these solvents may be considered neutral;

(ii) protic polar solvents (acetone, acetonitrile, dioxane), for which the enthalpy of complex formation is 4 to 5 kcal/mole; the enthalpy falls off with an increase in the chain length, (it is equal to 3 kcal/mole in Et_3SnCl);

(iii) alcohols (methanol, ethanol) which probably cause ionisation of the solute.

REFERENCES

- 1 J.J. Burke and P.C. Lauterbur, J. Amer. Chem. Soc., 83 (1961) 326.
- 2 B.K. Hunter and L.W. Reeves, Canad. J. Chem., 46 (1968) 1399.
- 3 A.P. Tupčiauskas, N.M. Sergeyev and Yu.A. Ustynyuk, Liet. Fiz. Rinkinys., 11 (1971) 93.
- 4 T.F. Bolles and R.S. Drago, J. Amer. Chem. Soc., 88 (1966) 5730.